Heteroduplex Oligonucleotide (HDO)

Trial service

We launches a service that allows customers to try **HDO** widely.

Both of pharmaceutical companies and academies can try this trial service.

About Technology

- > HDO is an artificial functional nucleic acid consisting of an ANTISENSE strand and a CARRIER strand.
- > A variety of **LIGAND**s can be bound to the **CARRIER** stand.
- > HDO with LIGAND have significantly better knockdown activity than ASO.

ANTISENSE strand e.g., oligonucleotide (Gapmer, Mixmer, PMO)	Oligonucleotide	
CARRIER strand (RNA)	RNA	Ligand

Service Contents We offer HDO with ligand* in your specified sequence and ligand.

Synthesis	A variety of modified oligonucleotides and ligands available
Purification	LC (RP, IEX)
Double-Stranded Formation	Annealing
Drying	Lyophilization
Standard Test Items	RP-UHPLC and MS (single strand) / Native PAGE (double strand)

Cautions

- > Maximum sample volume is 30 mg.
- > For experiment and research purposes only (not for human studies).
- We may refuse sequences targeting fatty acid synthase genes.

* HDO with ligand is provided by Nippon Shokubai Co., Ltd. under license from Rena Therapeutics Inc.

Business Flow

Heteroduplex oligonucleotide (HDO) **a nucleic acid pharmaceutical platform technology** Rena Therapeutics Inc. | https://www.renatherapeutics.com/?lang=en / | info@renatherapeutics.com/

HDO structure

The mechanism of action of the RNaseHdependent antisense effect is as follows : Step 1: HDO enters into the cell. Cell Step 2: Intracellular ribonuclease RNase H is cleaves the HDO carrier strand (RNA). RNase H Nucleus Step 3: The active strand (DNA) forms a double strand with the target mRNA in the cell nucleus, etc.. Target mRN. Step 4: As the target mRNA is cleaved by Rnase H, mRNA expression is suppressed, and drug efficacy is demonstrated. %RNase H has the property of cleaving RNA among RNase H double strands composed of DNA / RNA.

Strengths of HDO technology Knockdown activity

Ligand-bound HDO has much better knockdown activity than ASO.

When the knockdown activity was compared in an in vivo study, Toc-HDO knocked down 95% of the target mRNA, showing a much stronger knockdown activity than ASO and Toc-ASO.

Reagent : Saline, ASO, Toc-ASO, HDO, Toc-HDO & Toc=Tocopherol Target : ApoB mRNA Subject : C57RUS (J n=5) Dose : 200 mmolKg (0.87 mg/Kg as antisense strand for all reagents) Administration : Single bolus iv Time : 3 days after dosing * : Compared to Saline p<0.05
 *** : Compared to Saline p<0.001
 +++ : p<0.001

Rena

Comparison of knockdown activity of HDO & ASO in mouse liver

2024.09